Tuesday, January 15, 2013

INTEGRAL (KALKULUS 2)

Google Ads
INTEGRAL (KALKULUS 2)

1. Integral as Anti-Derivative
Integration is notated ∫ , introduced by Leibniz (1646-1716) from German. The relationship between Integral andDifferentiation can be written 
F’ (x) = dF/dx = f(x) ó f(x) dx = F(x)
2. Indefinite Integral
Suppose we have :
F(x) = 3x2 + 5x  - 7  , then F’(x) = 6x + 5.
F(x) = 3x2 + 5x + 8  , then F’(x) = 6x + 5
F(x) = 3x2 + 5x + c  , then F’(x) = 6x + 5
So we have, f(x) dx = F(x) + C, called as an indefinite integral.
C may value 1,2,3, …(indefinite) = constant of integration
f(x) is integrand and F(x) is common integral function.

a.  Indefinite integral of Algebraic Function
Suppose a is any real constant, f(x) and g(x) is each an integral function whose common integral function can be defined, then we have some formulas and properties as follows:
1). ∫ d ( F (x) ) = F (x ) + C
2). ∫ k d x = k x + C
3). ∫ xn dx = x n+1/ n +1 + C, with n ≠ - 1
4). For n = - 1, formula ( 3 ) can be : ∫  1/x  dx =  ln x + C
5). ∫ k f ( x ) dx = k ∫ f (x) dx
6). ∫ [ f ( x ) + g (x) ] dx =  ∫ f (x) dx + ∫ g ( x ) dx
7). ∫ [ f ( x ) - g (x) ] dx =  ∫ f (x) dx - ∫ g ( x ) dx

Example:
1) Find the result of ∫ ( 5x9– 3x5 + 2xÖx + x-1 - 5)dx
   =  5x103 x6 + 2x5/2 + Ln x + C
      10         6       5/2
   =  5x103 x6 + 4 x5/2+ Lnx + C
      10         6        5
  =  1x101 x6 + 4√x5+ Lnx + C
      2          2        5
Exercise:
A. Find the result of these integrals !
1. ∫ F(x) dx, where F(x) = …………………………
2. ∫ F(s) ds, where F(s) = …………………………
3. ∫ G(t) dt , where G(t) = …………………………
B. Find function F if the following are given : F’(x) = 6x2 , F(0) = 0
C. Given that F’(x) = 4x-1 and F(3) = 20. Find the F(x) !
D. The slope of tangent of a curve at each point (x,y) is expressed by dy/dx = 3x2– 6x + 1. If the curve passes point (2,-3), find its equation !
Solution :

b.  Indefinite integral of Trigonometric Function
The rule of determining the integral of a trigonometric functions based on the differentiation of each function is as follows:
1). If y = Sin x → then dy/dx = Cos x → dy = Cos x dx
                                                   ∫ dy = ∫  Cos x dx
                                                       y = Sin x + C
2). If y = Cosx → dy/dx = - Sin x → dy = - Sin x dx
                                                     ∫ dy = ∫ - Sin x dx
                                                         y = Cos x + C
                                                     ∫ dy = ∫  Sin x dx
                                                         y = - Cos x + C
3). If Y= tan x = sin x/ cos x = U/V = (U'.V - V'.U) / V2

     Then, Y' = (Cos x Cos x – (- Sin x ) Sin x) / Cos2 x

                    = (Cos2x + Sin2 x) / Cos2x

                    = 1/ Cos2 x = Sec2x

So, = ∫  Sec 2x dx = tan x + C
4). If Y= Cot x = Cos x/ sin x = U/V = (U'.V - V'.U) / V2

    Then Y' = (- Sin x Sin x –  Cos x  Cos x) / Sin2x

         = (- Sin2 x – Cos2 x) / Sin2x

         = - ( Sin2 x + Cos2 x) / Sin2x

         = -1/ Cos2x = - Cosec2 x

So,  = ∫  Cosec2 x dx  = Cot x + C

 

FORMULAS OF INTEGRAL TRIGONOMETRIC

1).    Sin x dx  = - Cos x + C
2).    Cos x dx  = Sin x + C
3).    tan x dx  = ln | Sec x | + C = - ln | Cos x | + C
4).    Cot x dx  = ln | Sin x | + C
5).    Cosec x dx  = ln | Cosec x – Cot x | + C   = ln | tan x/2 | + C
6).    Sec x dx  = ln | Sec x + tan x | + C = ln | tan ( x/2 + λ/2 | + C
7).    Cosec2 x dx  = - Cot x + C
8).    Sec2x dx  = tan x + C
9).    Cosec x Cot x dx  = - Cosec x + C
10).    Sec x tan x dx  = Sec x + C
11).    Sin ax dx  = -1/α Cos α x + C
12).    Cos ax dx  = 1/a Sin ax + C
13).    Sin (ax + b) dx  = 1/-α Cos (α x + b ) + C
14).    Cos( ax + b) dx  = 1/α Sin ( αx + b) + C
15).    Sinⁿ x Cos x dx  = 1/n+1 Sinn+1  x + C
16).    Cosⁿ x Sin x dx  = - 1/n+1 Cosn+1  x + C
NOTES :
Please Remember some importants Formulas to help you find the integral of Trigonometric functions !

Cos² x +Sin² x = 1

Sin² x  = ½  (1 – Cos 2 x )

Cos² x  = ½  (1 + Cos 2 x )

1 + tan² x = Sec² x

2 Sin αCos β = Sin (α + β ) + Sin (α - β )
2 Cos α Sin β = Sin (α + β ) -  Sin (α - β )
            2 Cos α Cos β = Cos (α + β ) + Cos(α- β)
- 2 Sin αCos β= Cos (α+ β) - Cos (α - β )

Examples:


1). ∫ (5 Sin x – 3Cos x + 2 Sec2x)dx
   = 5 (- Cos x ) – 3Sin x + 2 tan x + C
   = - 5 Cos x  – 3Sin x + 2 tan x + C

2). ∫ (5 Sec2 x – 2 Sin x + 3 Cosx) dx
    = 5 tan x + 2 Cos x + 3 Sin x + C

C. Integration by substitution method
Suppose by applying a substitution of u = g(x), where g is a function with derivation so that ∫f(g(x)).g’(x)dx can be changed into ∫f(u)du. If f(u) is an anti-derivative of f(x), then ∫f(g(x)).g’(x)dx = ∫f(u)du = F(u) + C = F(g(x)) + C.
            To get better understanding about the above formula, study the following example:
1). Find the results of:
a)  ∫x (3x2 – 5 x)10 dx
     Solution: Suppose  U = 3x2 – 5
                      du/dx = 6x
                          du  = 6x dx
                    1/6 du  = x dx
 So, ∫x (3x2 – 5 x)10dx  = ∫ U10 .1/6 du
                                         = ∫ 1/6 .1/11U11 + C
                                         = ∫ 1/66 U11 + C
                                         = ∫ 1/66 ( 3x2 – 5 )10 + C
b) ∫ (Sin 7x) Cos x dx
     Solution : Suppose U = sin x
                      du/dx = Cos x
                          du  = Cos x dx
     So, ∫ (Sin 7x) Cos x dx = ∫ U7. du
                                          =  ∫ 1/8 U8 + C
                                          =  1/8 Sin x8 + C

C)  ∫( x4 + 3x )30 ( 4 x3) dx
     Solution : Suppose  U = x4 + 3x
                      du/dx = 4 x3 + 3
                           du = 4 x3+ 3 dx
     So, ∫ ( x4 + 3x )30( 4 x3 ) dx
    =   ∫ U30 .du
    =   ∫1/31 U31 + C
     =   ∫1/31 ( x4 + 3x )31 + C

d) ∫ Cos ( 3x +1). Sin ( 3x + 1 ) dx
    Solution : Suppose  U = Sin ( 3x + 1 )
                 du/dx  = Cos (3x + 1).3
                     du   = Cos (3x + 1).3 dx
               1/3 du   = Cos (3x + 1) dx
 So, Cos ( 3x +1). Sin ( 3x + 1 ) dx
     =   ∫ 1/3 du . U
     =     U.1/3 du
     =     ½ U2. 1/3 du
     =     ½ .1/3 U2 + C
      =     1/6 U2 + C
      =     1/6 Sin2. (3x +1)+ C

e). ∫ Sin5 x2( x . Cos )2 dx
     Solution: Suppose   U = Sin x2
                  du/dx  = Cos x2 . 2x
                        du = 2x Cos x2.dx
                    ½ du = x cos x2.dx
      So,  ∫ Sin5 x2 ( x . Cos )2 dx   = ∫ U5.½ du
                                                 = ∫ 1/6 U6. ½ du
                                                 = ∫ ½. 1/6 U6+ C
                                                 = ∫ 1/12 U6 + C
                                                 = 1/12 ( Sin x2 )6 + C
Exercises :
By Using the substitution method find the following integrals !
1) ∫  ( x4 - 1 ). x2 dx  = ….

2) ∫     3y     dy
           2y2 +5
3) ∫ √ (7x+4) dx = …


Google Ads
Facebook Twitter Google+

 
Back To Top